
A Hybrid Approach to Rare Word Representation in Neural Conversational
Models

Aditi Nair
NYU Center for Data Science

asn264@nyu.edu

Akash Shah
NYU Center for Data Science

ass502@nyu.edu

1 Introduction

Conversational agents have long been of interest to
scientists from both a theoretical and technological
perspective. Technological advocates of conversa-
tional agents - or “chatbots” - argue that they of-
fer a seamless way to integrate new product ser-
vices and functionalities with existing messaging in-
terfaces. Theoretical proponents of conversational
agents point to their value in the field of artificial
intelligence, expanding our knowledge of the lim-
its and capabilities of computational machines in
human-like reasoning.

Recent innovations in neural language model-
ing and recurrent neural networks have allowed re-
searchers to engineer conversational agents which
rely on patterns learned from distributed representa-
tions of conversational data to generate responses to
user chats and queries. This departure from the con-
ventional rule-based approach to chatbot engineer-
ing eliminates the need for manual feature engineer-
ing and enables developers to build chatbots which,
theoretically, are capable of generating tailored re-
sponses to unseen dialogue topics and formats.

Varied challenges remain in the new paradigm for
conversational models. These include incorporat-
ing contextual and episodic memory into the con-
versational models and enabling the models with
personality-like attributes (Sordoni et al., 2015; Li et
al., 2016a). We contend that such problems - while
interesting - cannot be fully solved without first ad-
dressing the well-known tendency of non-specific
or “safe” responses in neural conversational mod-
els, as well as the lack of intuitive and scalable met-
rics to assess the quality of these models. For ex-

ample, a chatbot that often responds with “I dont
know” provides limited evidence of personality (or
lack thereof). Similarly, the lack of variety in re-
sponses provides limited insight into its memory ca-
pabilities (or lack thereof).

In particular, many current model architectures
handle all out-of-vocabulary (OOV) tokens identi-
cally, further encouraging similar, generic responses
to dissimilar queries which contain OOV tokens. A
solution to this problem should be robust to (rel-
atively) limited training data, since the domain of
conversational topics and language is large and di-
verse - far bigger than any manageable dataset.

We implement the Neural Conversational Model
of Vinyals and Le (2015) and present a novel method
to handle the problem of rare and unknown word
handling in conversational models. We reason that
named entities (which are often OOV tokens) are
often used and repeated in conversation in a man-
ner that is agnostic to their specific meanings. Con-
versely, for tokens which are not named entities,
their use within conversations is generally depen-
dent on their semantic meaning. Therefore, we pro-
pose a method which has the dual goal of incor-
porating a copying mechanism for named entities
as well as providing better distributed representa-
tions of OOV tokens. To this end we propose us-
ing a Copyable model (Gu et al., 2016) to man-
age named entities, and a continuous bag-of-words
(CBOW) classifier (Mikolov et al., 2013) to “guess”
in-vocabulary substitutions for the remaining OOV
tokens, based on the known context of each OOV
token.



2 Related Work

2.1 Sequence-to-Sequence Learning for
Conversational Models

Unlike feed-forward neural networks, Recurrent
Neural Networks (RNNs) are capable of model-
ing variable-length sequences of inputs and outputs.
Cho et al. (2014) and Sutskever et al. (2014) pro-
posed the Sequence-to-Sequence (Seq2Seq) frame-
work which uses RNNs to both encode and de-
code variable-length inputs and outputs. Cho et
al. (2014) and Sutskever et al. (2014) also recom-
mended the use of Gated Recurrent Units (GRUs)
and Long Short-term Memory units (LSTMs) re-
spectively to capture long-term dependencies in the
input sequences over time.

This encoder-decoder architecture uses an en-
coder RNN to recursively read and summarize in-
put sequences with a distributed vector representa-
tion, called the hidden state of the RNN. Once the
encoder has processed the last token of the input se-
quence, the hidden state contains a distributed vector
summarization of the entire input sequence, known
as the context vector. This context vector is then fed
into the decoder RNN, which generates an output
sequence conditioned on the information from the
context vector.

Conversational models using RNNs and the
Seq2Seq framework have recently been explored.
Shang et al. (2015) created an encoder-decoder
model to create a “Neural Responding Machine”
trained on post-response pairs from Weibo, a Chi-
nese micro-blogging site. Sordoni et. al. (2015)
used triples of consecutive conversational utter-
ances to develop responding machine; in 2016, Sor-
doni et al. (2016) used the same data to build
a context-sensitive hierarchical recurrent encoder-
decoder (HRED) model for conversation.

Vinyals et al. (2015) directly applied the
Seq2Seq model to build conversation models on
chat-response pairs. Their first model, trained on
an IT helpdesk chatlog, assessed whether the gen-
erative model could address user’s questions and is-
sues within a specific domain. The second model,
trained on the popular OpenSubtitles dataset, as-
sessed whether the model could emulate human con-
versation with responses that were both relevant and
natural. The second model was preferred over the

well-known statistical phrase-based chatbot Clever-
Bot when evaluated by humans on 200 queries.

2.2 Inducing Copying Mechanisms in
Sequence-to-Sequence Models

The problem of copying or repeating input sub-
sequences in output sequences of neural language
models has recently become an active research area.
Vinyals et al., (2015) introduced Pointer Networks,
which use the soft attention mechanism (Bahdanau
et al., 2014) in order to create models whose out-
puts point to input elements. Merity et al. (2016)
incorporated the Pointer mechanism with an RNN
language model to build Pointer-Sentinel RNN lan-
guage models which are able to output tokens se-
lected from input sequences and also generate to-
kens which are not contained in the corresponding
input sequence; this model uses a sentinel gating
function to determine whether to output predictions
from the pointer component or the RNN component
of the model.

Similarly, Gu et al. (2016) developed CopyNet, a
Seq2Seq-based conversational model which utilizes
“competing” generate and copy modes. The likeli-
hood of each possible output token at each timestep
in the decoder is computed as the sum of score func-
tions for the generate and copy models. Generally,
the generate score function computes the compati-
bility of each decoder token in the target vocabulary
with the decoder state, and the copy score function
computes the compatibility of each input token with
the decoder state.

While these models - particularly CopyNet - have
state-of-the-art performance in conversational and
related applications - they require non-trivial modifi-
cations to the original Seq2Seq architecture. Luong
et al. (2014) proposed a series of simple modifica-
tions at the encoding stage of encoder-decoder neu-
ral machine translation (NMT) models in order to
mitigate the inability of these models to adequately
translate sentences containing rare words. They
proposed three distinct approaches - the Copyable
Model, the PosAll Model, and the PosUnk model -
to use an external word alignment algorithm to align
tokens in source and target sentences, and to use
these alignments to modify the sequence represen-
tations at the encoder level of the Seq2Seq model.
Later, we will show that for English-to-English Con-



versational Models, the alignment algorithm is irrel-
evant and that these methods, specifically the Copy-
able Model, can be used to induce an exact copying
mechanism which we apply to named entities in our
dataset.

2.3 Distributed Representations of Unknown
Words

Other researchers have explored the inclusion of
character- and morpheme-level information for rare
and unknown words. Botha and Blunsom (2014) de-
veloped morpheme-level RNN models to generate
distributed representations of known morphemes.
Then unknown words can be represented as a com-
bination of the vectors of their known morphemes.
(Luong et al. (2013) also took a similar, morpheme-
level approach.) Luong and Manning (2016) used
a character-level RNN language model to compute
distributed representations of unknown words for
Seq2Seq Machine Translation models.

Interestingly, Bojanowski et al., (2016) train a
variation of the skip-gram model on character n-
grams of within-vocabulary tokens. When the model
encounters an unknown word, it obtains vector rep-
resentations of its character n-grams using the skip-
gram model. Instead of a default UNK vector, the
authors pass the average of the n-gram vectors to
the model. Bojanowski et al., (2016) suggest an in-
verse hypothesis to our own approach for represent-
ing unknown words: they infer that subword infor-
mation is informative in estimating semantic mean-
ing of unknown words, whereas we infer that the
sentence-level context is informative in estimating
the semantic meaning of unknown words. (Most
likely, both are true to varying degrees.) Incidentally
Bojanowski et al., (2016) uses a skip-gram model for
this feature where we use the related CBOW model.

3 Data

Our data comes from the OpenSubtitles dataset
(Tiedemann, 2009), an open dataset consisting of
transcriptions of movie dialogues for over 1.3 mil-
lion movies. Since speakers are not indicated in
this dataset, we assumed that alternating lines were
spoken by different characters. Every sentence in a
movie transcript (except the last) appears once as an
example query and the following sentence is its tar-

get response. The sentences chosen for the train, de-
velopment, and test sets were chosen at the movie
level so that the datasets are completely mutually
exclusive. We trained our models using 13 million
query-response pairs.

During pre-processing we removed XML and
HTML tags from the query-response pairs. We
also replaced dates, times, numbers, and dollar
amounts with category-specific placeholders to pre-
vent data sparsity in those categories, removed non-
punctuation special characters, and (eventually) con-
verted all tokens to lowercase.

4 Methods

4.1 Copying Mechanism for Named Entities

An ideal method for handling OOV tokens which are
not named entities would be sensitive to the seman-
tic meaning and usage of the OOV token.

Therefore, we distinguish rare or OOV tokens
which are named entities from other rare or OOV
tokens. Many named entity tokens are unlikely to be
in vocabularies due to data sparsity. In addition, we
are often unconcerned with their semantic meaning,
and mainly want to note their position in a query in
order to capture the conditions under which they are
repeated in corresponding responses. For example,
the following conversation pattern is extremely com-
mon and we can easily substitute “Webster Hall”
with many other locations:

Speaker 1: I went to Webster Hall in the East
Village yesterday.

Speaker 2: Webster Hall is the best!

Accordingly, we adopt the Copyable method of
Gu et al., 2016 and replaced named entities in source
sentences with “Copyable” UNK markers - UNK 1,
UNK 2, and UNK 3. Repeated named entities in
the source sentence are assigned the same Copy-
able UNK tokens. The Copyable method was origi-
nally invented in the context of machine translation,
so the authors aligned tokens in the source and tar-
get languages, and assigned the appropriate UNK 1,
UNK 2 and UNK 3 tags to the corresponding align-
ments in the target sentence. Here, since both the
source and target language are English and since
source and target sentence pairs do not necessar-
ily have a shared semantic meaning, we simply tag



identical named entities in the source and target sen-
tence. (That is, source-to-target alignment is deter-
mined by equivalence.)

Unlike the original authors, we only apply this
method to named entities in our corpus, since we
specifically want to induce copying behavior in these
cases. Rather than slow down our data processing
pipeline by using a named entity recognition (NER)
tool, we simply approximated named entities as (a
series of) capitalized words not at the beginning of
sentences. This way, “East Village” would be eval-
uated as a single named entity token by our model.
(Gu et al., preferred the PosAll and PosUnk methods
for their application in machine translation, since the
Copyable method requires that in-vocabulary target
words must be aligned with in-vocabulary source
words. This is irrelevant here since the source and
target vocabularies are identical and we are specif-
ically addressing identical named entities.) Finally,
the example above would be encoded by our model
as:

Speaker 1: I went to UNK 1 in the UNK 2
yesterday.

Speaker 2: UNK 1 is the best!

4.2 Contextual Approximations for Unknown
Words

Next, we address the remaining issue of OOV to-
kens which are not named entities. Rather than
representing them uniformly as UNK tags, we pro-
pose a semantically-sensitive placeholder tag which
is chosen by a pre-trained continuous bag-of-words
(CBOW) classifier (Mikolov et al., 2013). As in
the original CBOW implementation, we randomly
remove single within-vocabulary tokens from sen-
tences in the training data. Next, we train a classifier
to predict the missing token based on a bag-of-words
comprised of the remaining within-vocabulary to-
kens in the sentence. (This is exactly the original
CBOW methodology.) When we encounter OOV
tokens when training and testing the Conversational
Model, we process their within-vocabulary context
as a bag-of-words and feed it to the CBOW clas-
sifier. (Since conversational sentences tend to be
short, we do not impose a context window.) The
within-vocabulary output of the CBOW classifier is
considered a persistent placeholder tag for the orig-

inal OOV token, given the source context: during
training, all instances of the same OOV token in the
source sentence and its corresponding response sen-
tence are replaced with the same placeholder tag, ob-
tained from the first CBOW “guess”. (However, the
same OOV token in a different source-response pair
may have a different placeholder tag depending on
its bag-of-words context in that source sentence.) Fi-
nally, we train our Conversational Model normally.
Optionally, at test time, we note when we have con-
verted an OOV tag in the user query to its place-
holder tag; if the placeholder tag reappears in the
model response, then it is transformed to the origi-
nal OOV tag before the response is printed.

This solution enables us to use distributional
approximations of OOV tokens instead of UNK
tags, thereby encouraging varied responses to user
queries containing varied OOV tokens. Addition-
ally, it does not require modifications to the standard
Seq2Seq architecture. Luong and Manning (2016)
have similarly approximated OOV tokens with the
distributed representations from RNNs trained as
character-level language models (in machine trans-
lation). This solution is simpler since it only requires
a CBOW classifier with reasonable token-level dis-
tributional knowledge of the training data, rather
than a character-level model which must acquire dis-
tributional knowledge of the data and character-level
knowledge of token meanings. (That is, it must not
only learn that “quite” and “quiet” are dissimilar to-
kens despite orthographic similarities, it must also
learn their respective semantic contexts.) Similarly,
our method is also simpler than morpheme-level im-
plementations of Botha and Blunsom (2014) and Lu-
ong et al., (2013), which require the additional step
of factoring tokens into their composite morphemes.

Even if the placeholder tokens are not good ap-
proximations of the OOV tokens, they should ide-
ally provide the model with better information about
the OOV token than the default UNK token. This
method can be implemented at train and test time.

5 Modeling

We trained Seq2Seq models with buckets to opti-
mize training, with bucket sizes of (5, 5), (10, 10),
(25, 25), (40, 40), where each pair (q, r) refers to the
maximum length query and response in that bucket.



Both the encoder and the decoder models were 2-
layer LSTM-RNNs, each with 1024 cells. We used
mini-batch gradient descent with a batch size of 32
for training. Our model was trained with the Adam
optimization algorithm (with learning rate 0.0001),
using gradient clipping for gradient norms above 5.
In order to accelerate training, we used sampled soft-
max by projecting to 512 samples before computing
our softmax. We used a closed vocabulary of size
100,000.

We explored using an attention-based encoder-
decoder model as well, however the training speed
was significantly slower without a noticeable de-
crease in perplexity or an improvement in chat qual-
ity. As a result, we decided to use a regular encoder-
decoder model that could be trained longer than an
attention-based model.

We experimented with various decoding methods.
In addition to the greedy argmax method of decod-
ing, where the most likely word is chosen at each
time step conditioned on the previous outputs, we
experimented with sampling from the softmax dis-
tribution. At each step, we sampled from the soft-
max probabilities for either the full vocabulary or
the top k probabilities, conditioning on the previous
outputs, in an attempt to get more varied responses
for the model.

We found that sampling over the entire softmax
distribution, motivated by Chatterjee et al. 2010,
gave the poorest results as the responses were com-
pletely ungrammatical and lacking in any semantic
coherence. To our surprise, this was partially the
case even for relatively small values of k, such as
top-10 sampling. While top-2 sampling often gave
more varied responses with the occasional ungram-
matical output or incorrect punctuation, it was not
clear that the benefit outweighed the cost. Therefore,
we proceeded with greedy argmax decoding for our
proper evaluation of our model types.

6 Evaluation

6.1 Challenges in the Evaluation of
Conversational Models

The proper evaluation of conversational models has
been a longstanding question with no obvious cor-
rect answer. As neural language models have a
specific target token they are trying to predict, log-

likelihood is a natural loss function that can be
trained on to achieve state-of-the-art results (Ben-
gio et al., 2003). In other common sequence to se-
quence tasks, such as machine translation, this in-
trinsic evaluation metric is a poor proxy for measur-
ing the strength of translation models since a single
source sentence can have numerous translations in
a target language. For this reason, Papineni et al.
(2002) developed the BLEU score, which scores an
output translation against a set of reference trans-
lations, and has been found to align well with hu-
man perception of translation quality. In conversa-
tion modeling, the evaluation task is even harder as
an appropriate response to a query can have widely
varied meanings and syntax.

While log-likelihood is still the standard intrinsic
evaluation metric for training in conversational mod-
eling, the use of BLEU to measure generalization
performance is questionable. In many cases where
multiple references - or examples of varying but
appropriate responses to queries - are unavailable,
BLEU must be computed with only a single refer-
ence example, which incorrectly implies that there
is only one appropriate answer to a query.

As a result, the most reliable evaluation metric has
been response evaluation by humans, which is costly
and time-consuming.

6.2 Results
Below, we compare the performance of three Neu-
ral Conversational Models. Though perplexity is not
an ideal metric for this purpose, we present these
values since they are closely related to the cross-
entropy loss function used for training. Similarly,
though BLEU is not an ideal measure for this task,
we present the BLEU-4 results in order to facilitate
comparison with other conversational models. All
models trained for approximately 50,000 gradient
steps.

All three models have exactly the architecture
described in Section 5, Modelling. The Copyable
model applies the Copyable method to named
entities during preprocessing. The CBOW + Copy-
able model applies the Copyable method to named
entities and the CBOW-based “guessing” method to
all other OOV tokens. We chose to incrementally
implement the Copyable and CBOW-based “guess-
ing” procedures to better understand the effect of



these changes on model outcomes.
Model Dev Perplexity Test BLEU
Baseline 18.35 .31
Copyable 19 .21
CBOW + Copyable 17.7 .24

Purely by the perplexity measure, the CBOW
+ Copyable model outperforms both alternatives.
Surprisingly, the Copyable model was the weakest
in terms of perplexity and BLEU. The baseline
model has the highest BLEU score - perhaps
because it is more adept at predicting the “correct”
2- through 4-grams compared to the other models.

6.3 Experiments

Since these measures are poor proxies for the proper
evaluation of conversational models, we provide ex-
ample conversations with these models. In order to
directly compare these models, we query the mod-
els with the same chats and compare their responses.

General Knowledge
To begin, we test the general knowledge and lan-

guage abilities of our chatbots.

BASELINE

USER: is fire red ?
BOT: yes .
USER: is fire green ?
BOT: no .
USER: How many friends do you have?
BOT: two .
USER: i like to play outside in the park in the
summer .
BOT: i don’ t know .
USER: What is your job?
BOT: you ...

COPYABLE

USER: is fire red ?
BOT: yes .
USER: is fire green ?
BOT: yes .
USER: how many friends do you have ?
BOT: i don’ t know .
USER: i like to play outside in the park in the
summer .
BOT: i don’ t know .
USER: what is your job ?

BOT: what ?

CBOW + COPYABLE

USER: is fire red ?
BOT: yes .
USER: is fire green ?
BOT: yes .
USER: how many friends do you have ?
BOT: i don’ t know .
USER: i like to play outside in the park in the
summer .
BOT: i don’ t know .
USER: what is your job ?
BOT: you are .

From these experiments, we can deduce that
the models can all converse reasonably well. For
example, all of the models are capable of detecting
yes-or-no questions and answering appropriately
(though not necessarily correctly). (In the case
of the Baseline model, it is even possible that the
model “knows” that fire is red, and not green.)
Additionally, as previous work has suggested,
generic answers tend to dominate the responses of
all models. Interestingly, though the question “what
is your job”? is encoded by the same sequence of
vocabulary tokens in all the models, each model
provides a different answer. This suggests that
corpus-wide changes in the encoding of named
entities and OOV tokens and/or the inherent ran-
domness of our training procedures can result in
somewhat different models.

Named Entity Unknowns
Next, we test how the models respond to different

named entities.

BASELINE

USER: Lets go find Christopher Robin.
BOT: no , no .
USER: Lets go find Tony Montana.
BOT: what ?
USER: My luggage went missing on the flight to
Florida, so I dont have my belongings.
BOT: i was just a little nervous .

COPYABLE

USER: lets go find Christopher Robin .
BOT: go .



USER: lets go find Tony Montana .
BOT: go .
USER: My luggage went missing on the flight to
Florida, so I dont have my belongings .
BOT: i was a UNK .

CBOW + COPYABLE

USER: lets go find Christopher Robin .
BOT: you go .
USER: lets go find Tony Montana .
BOT: you go .
USER: My luggage went missing on the flight to
Florida, so I dont have my belongings.
BOT: i was just a little .

Interestingly, the Baseline model provides the
most varied responses to the statements “Lets go
find Christopher Robin.” and “Lets go find Tony
Montana.” This is because the tokens “Christopher”,
“Robin”, “Tony” and “Montana” are contained in
the vocabulary. In the models with Copyable
modifications, “Christopher Robin” and “Tony
Montana” are considered single named entities and
encoded identically; therefore the corresponding
queries generate identical responses. Interestingly,
the final query - which contains a single OOV token
“Florida” - is also the most fluent for the Baseline
model.

Unknown Words
Finally, we observe the performance of the three

models on queries containing OOV tokens which are
not necessarily named entities.

BASELINE

USER: I was on a flight to Paris when I realized I
had left my portmanteau in Buenos Aires.
BOT: i was just a little nervous .
USER: John Smith faces academic probation for
not completing his distributional requirements.
BOT: i don’ t know .
USER: In Bayesian statistics there is a notion of the
posterior.
BOT: i don’ t know .

COPYABLE

USER: I was on a flight to Paris when I realized I
had left my portmanteau in Buenos Aires.
BOT: i was a UNK .

USER: John Smith faces academic probation for
not completing his distributional requirements.
BOT: he was a UNK .
USER: in Bayesian statistics there is a notion of the
posterior .
BOT: i don’ t know .

CBOW + COPYABLE
USER: I was on a flight to Paris when I realized I
had left my portmanteau in Buenos Aires.
BOT: i was in the UNK .
USER: John Smith faces academic probation for
not completing his distributional requirements.
BOT: he was a very good man .
USER: In Bayesian statistics there is a notion of the
posterior.
BOT: i was a man .

We observe that the CBOW + Copyable model
has the most variety in its responses - this ultimately
fulfills our goal of encouraging varied responses to
queries containing dissimilar OOV tokens. This
model also successfully communicates the notion of
location in the first query. Both models with the
Copyable modification also respond more specifi-
cally to the second query - containing the named en-
tity “John Smith” - than the Baseline model. How-
ever, we note that these models often generate UNK
tags in their responses, which suggest that they can
be more carefully tuned or trained further.

7 Future Experiments with Unknown
Word Representation

In future experiments, we may consider implement-
ing more complex models - with more layers, more
memory cells, and more training time. However, we
observe that Vinyals and Le (2015) trained a some-
what larger model than ours - two layers and 4096
cells compared to two layers and 1024 cells - and
observed a similar perplexity of about 17.

In the final CBOW + Copyable model, we
observed that the inclusion of a CBOW model
for guessing distributionally-similar distributed
representations successfully encouraged varied
responses to dissimilar queries containing OOV
tokens. We trained the CBOW model with the de-
fault parameters from Facebook’s implementation
of the FastText classifier - specifically, with only
unigram representations of the input data. Despite



the obvious weaknesses of unigram-based language
modelling, the classifier was fairly successful. To
evaluate this model, we created a test set where
individual in-vocabulary tokens were removed from
the sentence. The model predicted these removed
tokens with 37.44% accuracy. (We needed to only
remove in-vocabulary tokens since the model was
trained to guess in-vocabulary tokens, and we
wanted to measure its ability to guess the missing
token exactly.) However, from the below examples,
we can see that even when the model does not
guess the missing word exactly, it is often adept at
guessing words which tended to occur in similar
contexts to the missing word.

Sentence Label Guess
You [MISSING] ! swines bastard
[MISSING] never gets she he
discouraged .
He [MISSING] drafted from the was is
Seine area .

However, because the model was only trained
using unigrams, it did not have a good signal about
where in the input bag-of-words the missing token
was located. Therefore, it had limited information
about the part-of-speech and meaning of the missing
token. In the following examples we see that the
CBOW model guesses tokens that are incorrect -
and semantically dissimilar from the missing token
- but could reasonably appear somewhere within the
provided sentences.

Sentence Label Guess
I’ m going to [MISSING] blow in
this joint .
If you pay double [MISSING] the would
amount, they bring it
anywhere you like
Now I can go [MISSING] home straight ,
after the execution .

For example, in the first example, the original
sentence reads “I’ m going to blow this joint”
whereas the incorrect model guess could reasonably
fit into the sentence as “I’ m going in to this joint”.

In future work, we propose the implementation of
a model which is intuitively similar to the CBOW-
guessing model but is sensitive to word order and the

location of the unknown token. We suggest develop-
ing a language model with two bidirectional RNNs
- one which reads the sequence up to the missing
token in forward order, and one which reads the se-
quence after the missing token in reverse order. The
output of each RNN would capture the left and right
contexts of the missing token, with more influence
from nearby tokens. For example, given the first ex-
ample above, the forward RNN would encode the
sequence [‘I’, ‘m’, ‘going’, ‘to’] and the backwards
RNN would encode the sequence [‘.’, ‘joint’, ‘this’].

Next, we would concatenate the final hidden
states of the two RNNs and pass the resulting vector
through a multi-layer perceptron. The model param-
eters (of both RNNs and the MLP) would be trained
to guess the missing token. Finally, when we en-
counter OOV tokens during the training and testing
of the conversational model, we can use the bidirec-
tional RNN guessing model to provide location- and
order-sensitive distributional guesses for the OOV
token. (We would still apply Copyable for named
entities.) These guesses would be more informative
than the default UNK tags used for OOV tokens,
and would ideally be better distributional approxi-
mations of the OOV tokens than the guesses pro-
vided by the current CBOW model.

8 Collaboration Statement

Aditi Nair wrote the following sections of the pa-
per: Introduction, Related Work (Copying Mecha-
nisms), Related Work (Distributed Representation of
Unknown Words), Methods, Evaluation (Results),
Future Experiments with Unknown Word Represen-
tation.

Akash Shah wrote the following sections of the
paper: Related Work (Sequence-to-Sequence Learn-
ing), Data, Modeling, Evaluation (Challenges in
Evaluation). Both collaborated to evaluate experi-
ment results and edit the paper.

During model development Aditi managed:
data cleaning/processing, chat/evaluation interface,
Copyable and CBOW implementation.

Akash managed: data scraping, Sequence-to-
Sequence training pipeline, decoding methods, ex-
ecution of experiments.

Aditi developed the CBOW + Copyable model
design.



Acknowledgments

We would like to thank Professor Sam Bowman and
teaching assistants Melanie Chen and Tian Wang for
their feedback and guidance over the course of the
project.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. journal of machine learning research,
3(Feb):1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jan A Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In ICML, pages 1899–1907.

Samidh Chatterjee and Nicola Cancedda. 2010. Mini-
mum error rate training by sampling the translation lat-
tice. In Proceedings of the 2010 Conference on Empir-
ical Methods in Natural Language Processing, pages
606–615. Association for Computational Linguistics.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism
in sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A persona-based neural con-
versation model. arXiv preprint arXiv:1603.06155.

Jiwei Li, Will Monroe, Alan Ritter, and Dan Jurafsky.
2016b. Deep reinforcement learning for dialogue gen-
eration. arXiv preprint arXiv:1606.01541.

Minh-Thang Luong and Christopher D Manning. 2016.
Achieving open vocabulary neural machine translation
with hybrid word-character models. arXiv preprint
arXiv:1604.00788.

Thang Luong, Richard Socher, and Christopher D Man-
ning. 2013. Better word representations with re-
cursive neural networks for morphology. In CoNLL,
pages 104–113.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2014. Addressing
the rare word problem in neural machine translation.
arXiv preprint arXiv:1410.8206.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting on association for computational
linguistics, pages 311–318. Association for Computa-
tional Linguistics.

Iulian Vlad Serban, Ryan Lowe, Laurent Charlin, and
Joelle Pineau. 2015. A survey of available corpora for
building data-driven dialogue systems. arXiv preprint
arXiv:1512.05742.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
arXiv preprint arXiv:1503.02364.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun
Nie, Jianfeng Gao, and Bill Dolan. 2015. A
neural network approach to context-sensitive gener-
ation of conversational responses. arXiv preprint
arXiv:1506.06714.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Jörg Tiedemann. 2009. News from opus-a collection of
multilingual parallel corpora with tools and interfaces.
In Recent advances in natural language processing,
volume 5, pages 237–248.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.


